Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells

نویسندگان

  • Ludovic S. Mure
  • Megumi Hatori
  • Quansheng Zhu
  • James Demas
  • Irene M. Kim
  • Surendra K. Nayak
  • Satchidananda Panda
چکیده

Melanopsin photopigment expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) plays a crucial role in the adaptation of mammals to their ambient light environment through both image-forming and non-image-forming visual responses. The ipRGCs are structurally and functionally distinct from classical rod/cone photoreceptors and have unique properties, including single-photon response, long response latency, photon integration over time, and slow deactivation. We discovered that amino acid sequence features of melanopsin protein contribute to the functional properties of the ipRGCs. Phosphorylation of a cluster of Ser/Thr residues in the C-terminal cytoplasmic region of melanopsin contributes to deactivation, which in turn determines response latency and threshold sensitivity of the ipRGCs. The poorly conserved region distal to the phosphorylation cluster inhibits phosphorylation's functional role, thereby constituting a unique delayed deactivation mechanism. Concerted action of both regions sustains responses to dim light, allows for the integration of light over time, and results in precise signal duration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The importance of intrinsically photosensitive retinal ganglion cells and implications for lighting design

We reviewed the role of melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) in light-dependent functions, including circadian rhythm that is important for health and visual perception. We then discussed the implications for lighting design.

متن کامل

Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses.

PURPOSE To determine the relative contributions of inner and outer retinal photoreception to the pupillary light response. METHODS Wild-type, retinal degenerate (rd/rd), and melanopsin mutant (opn4(-/-)) mice were tested for pupillary light responsiveness by video pupillometry before, during, and after exposure to supersaturating light intensities. Similar lighting protocols were used to prob...

متن کامل

A Role for Melanopsin in Alpha Retinal Ganglion Cells and Contrast Detection

Distinct subclasses of retinal ganglion cells (RGCs) mediate vision and nonimage-forming functions such as circadian photoentrainment. This distinction stems from studies that ablated melanopsin-expressing intrinsically photosensitive RGCs (ipRGCs) and showed deficits in nonimage-forming behaviors, but not image vision. However, we show that the ON alpha RGC, a conventional RGC type, is intrins...

متن کامل

G-Protein Coupled Receptor Kinase 2 Minimally Regulates Melanopsin Activity in Intrinsically Photosensitive Retinal Ganglion Cells

Phosphorylation is a primary modulator of mammalian G-protein coupled receptor (GPCR) activity. The GPCR melanopsin is the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina. Recent evidence from in vitro experiments suggests that the G-protein coupled receptor kinase 2 (GRK2) phosphorylates melanopsin and reduces its activity following light ex...

متن کامل

Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice.

In the mammalian retina, a small subset of retinal ganglion cells (RGCs) are intrinsically photosensitive, express the opsin-like protein melanopsin, and project to brain nuclei involved in non-image-forming visual functions such as pupillary light reflex and circadian photoentrainment. We report that in mice with the melanopsin gene ablated, RGCs retrograde-labeled from the suprachiasmatic nuc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2016